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Cascading Seismic Hazards and Impacts

Moderate-to-large earthquakes are often followed by a series of ground failures and subsequent impacts, 
such as landslides, liquefaction, and building damage. 

Hokkaido, Japan 2018

Puerto Rico, 2020
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Existing Hazards and Impact Models

Most existing models focus on single type of hazard or impact
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[1] Nowicki Jessee, M. A., Hamburger, M. W., Allstadt, K., Wald, D. J., Robeson, S. M., Tanyas, H., ... & Thompson, E. M. (2018). A global empirical 
model for near‐real‐time assessment of seismically induced landslides. Journal of Geophysical Research: Earth Surface, 123(8), 1835-1859.

• Traditional statistical model

? Outdated and low-reso features
? Ignoring event-specific patterns
? Ignoring the interdependencies among

hazards
→ constrained accuracy

✓ Incorporating physical features
✓ Easy to implement
✓ Global (event-sharing) patterns
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Existing Hazards and Impact Models

Remote sensing brings high-resolution and location-specific information

• e.g., Damage Proxy Maps based on InSAR images
estimate changes of temporal coherence of satellite 
images before and after earthquake to indicate the 
ground surface changes.



Damage ProxyMap of M6.2 Earthquake in Central Italy, 2016
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Existing Hazards and Impact Models

Remote sensing brings high-resolution and location-specific information

• e.g., Damage Proxy Maps based on InSAR images
estimate changes of temporal coherence of satellite 
images before and after earthquake to indicate the 
ground surface changes.

? Mixed signals of multiple hazards and impacts
? High environmental noises

✓ High-resolution information
✓ Event-specific up-to-date field information

Environmental Noises?

?

Landslide?

Liquefaction?

Building Damage?

All of above?

What’s the probability?
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Cascading Seismic Hazards and Impacts
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Research Objective

To effectively fuse prior geospatial models with remote sensing data for rapid and
accurate joint estimations of multi-hazard and building damage.
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Causal graphical model to approximate complex interactions

• Conceptual interactions
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Causal Relationship
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Causal graphical model to approximate complex interactions

✓ Flexible, interpretable, and structured 
representations – easy to add or delete nodes

✓ Better approximate the complex distribution 
transformation

✓ Fuse prior models with information from 
sensing observations through causal 
dependencies
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Inference over Multi-layer Causal Bayesian Networks
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Goal: infer posterior probability of unobserved 

multi-hazards and impacts: 𝑃(𝑥𝑖
𝑙 = 1|𝑌, 𝑍) for 

every location 𝑙 ∈ {1,⋯ , 𝑁}
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Target Variables: 𝑋 = {𝑥1, 𝑥2, 𝑥3, ⋯ }
Observed Variables: 𝑌

𝑍 = {𝑧1, 𝑧2, 𝑧3, ⋯ }

𝑋 = {𝑥1, 𝑥2, 𝑥3, ⋯ } ? Multi-layer unobserved variables
? Unknown parameters for unobserved 

variables
? Scalability to large regions
? No inventory is available

Global parameters: 𝑊 = {𝜃, 𝜇, 𝜙, η}
Input prior knowledge: 𝑍
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Inference over Multi-layer Causal Bayesian Networks

Goal: Given sensing observations 𝑌 and geospatial information 𝑍, infer the probability of unobserved 

multi-hazards and impacts: 𝑃(𝑥𝑖
𝑙 = 1|𝑦𝑙) for every location 𝑙

Potential solutions

Variational inference: Approximate the posterior 𝑃(𝑥𝑖
𝑙 = 1|𝑦𝑙) with a family of distribution q(𝑥𝑖

𝑙 = 1) by 
optimizing the marginal likelihood of observations 𝑃(𝑌)

Monte Carlo Markov Chain: Approximate 𝑃(𝑥𝑖
𝑙 = 1|𝑦𝑙) by applying a stochastic transition operator to 

iteratively sample from the posterior. (sampling process hardly converges in large networks with
multiple unobserved variables)
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Variational Inference over Multi-layer Causal Bayesian Networks

Goal: Given sensing observations 𝑌 and geospatial information 𝑍, infer the probability of unobserved 

multi-hazards and impacts: 𝑃(𝑥𝑖
𝑙 = 1|𝑦𝑙) for every location 𝑙

• Initialize the posterior estimations as Bernoulli distributions over the unobserved variables with set of variational 

parameters, 𝑞(𝑥𝑖
𝑙 = 1)

• Then, we find the setting of the global parameters that makes our approximation closest to the posterior 
distribution. 
❑ This is where optimization algorithms come in. 

• Then we can use with the fitted parameters in place of the posterior.
❑ E.g. to investigate the posterior distribution over the hidden variables, to form predictions about future data, 

or find modes, etc.

The main idea behind variational Bayes: 
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Inference over Multi-layer Causal Bayesian Networks



𝑙∈{1,⋯,𝑁}

log 𝑃 𝑦𝑙 = 

𝑙∈{1,⋯,𝑁}

log න
𝑋𝑙
𝑝 𝑋𝑙 , 𝑦𝑙

𝑞(𝑋𝑙)

𝑞(𝑋𝑙)
= 

𝑙∈{1,⋯,𝑁}

log (𝔼𝑞
𝑝 𝑋𝑙, 𝑦𝑙

𝑞 𝑋𝑙
)

≥ 

𝑙∈{1,⋯,𝑁}

𝔼𝑞log 𝑝 𝑋𝑙 , 𝑦𝑙 − 𝔼𝑞log 𝑞 𝑋𝑙

The Evidence Lower Bound: A tight lower bound for marginal log likelihood of observed variables

The Evidence Lower Bound (ELBO)

Maximizing this ELBO to
maximize the log-likelihood

log 𝑝 𝑌 = 𝐾𝐿(𝑞(𝑋)||𝑝(𝑋|𝑌)) + 𝐸𝐿𝐵𝑂

Maximizing this ELBO is equivalent to minimize the distance between 𝑞(𝑋) and true posterior distribution
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Inference over Multi-layer Causal Bayesian Networks

Our objective function for maximization : ELBO in our multi-layer causal Bayesian network

Maximizing this ELBO by
optimizing (1) posterior approximation q(X) and (2) the global weight parameters W
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Stochastic Variational Inference Algorithm Design

1. Local pruning → remove inactive nodes for some locations
2. Stochastic variational inference → update the model with mini-batched data
3. L-1 regularization to global causal coefficients→ constrain the information from prior

model or from DPMs

Classical VI is inefficient: Need to crunch through the full dataset to update variational 
parameters 

Can’t handle massive data
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Algorithms for Joint Inference of Posterior and Causal Coefficients

Causal dependency assumption
• DPM vs Damage (LS, LF, BD): log-linear; Between Damage (LS, LF, BD): logit-linear

• In each iteration, we first randomly sample a mini-batch of locations from the given map.

• Construct local model through local pruning strategy.

Expectation-Maximization for optimizing the ELBO

• In the expectation step, update the posterior estimates.

• In the maximization step, we conducted stochastic gradient updates to estimate the optimal weights using a
mini-batch of data randomly sampled from different locations.



Results

The 2018 Hokkaido, Japan Earthquake occurred on September 6, 2018, at 3:08 am (JST) 

DPM3: 30m resolution, covered the towns of Atsuma and Abira, generated by ARIA team using the SAR 
images from the ALOS-2 satellites of the Japan Aerospace Exploration Agency 



Results
Atlas V3 prior

our est. based on
V3 prior

Landslide

Liquefaction

Building
Damage

Cross-entropy loss:

Prior: 1.45 

Posterior: 0.61

AUC:

Prior: 69.26 %

Posterior: 93.33%
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93.33%Posterior AUC 93.04% 91.84% 88.83%

Results

*Prior AUC: 69.26 %

The 2018 Hokkaido, Japan Earthquake occurred on September 6, 2018, at 3:08 am (JST) 



Results

DPM2: 30m resolution, covered the towns of Atsuma and Abira, generated by ARIA team using the SAR 
images from the Copernicus Sentinel-1 satellites of the European Space Agency 
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Results
Prior Uncertainty with prior Our model Uncertainty with our model

Cross-entropy loss:

Prior: 0.0238
Posterior: 0.0175 

AUC:

Prior: 90.36 %

Posterior: 90.83%

Cross-entropy loss:

Prior: 0.0301
Posterior: 0.0095

AUC:

Prior: 82.87 %

Posterior: 90.49%

Landslide

Liquefaction

Building
Damage

Binary-class AUC:

Prior: 69.50 %

Posterior: 92.36%
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Results

c

DPMsPrior Models

Liquefaction

Landslide

Building Damage

DPMsPrior Models

Advantages of the algorithm:
• converging fast
• flexible to control the information input from prior models and DPMs
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Conclusions

• Jointly modeling seismic multi-hazards and impacts based on their causal dependencies
helps to better understand the mixed signals in sensing images

• A new stochastic variational inference algorithm is derived to infer over large-scale seismic
zone efficiently and effectively

• Damage proxy maps provide event-specific high-resolution information about multiple
hazards and building damage and can be integrated with event-sharing geospatial models
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