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Abstract 
Earthquake-induced secondary ground failure hazards, such as liquefaction and landslides, result in catastrophic building 
and infrastructure damage as well as human fatalities. To facilitate emergency responses and mitigate losses, the U.S. 
Geological Survey provides a rapid hazard estimation system for earthquake-triggered landslides and liquefaction using 
geospatial susceptibility proxies and ShakeMap ground motion estimates. However, the resolution and accuracy of these 
models are often limited by coarse granularity and large uncertainties of available geospatial features provided at a 
regional scale. Recently, with the advancement of remote sensing technologies, synthetic aperture radar (SAR) images 
are captured and analyzed to obtain a rapid estimate of earthquake-induced correlation changes between pre- and post-
event images. These correlation changes indicate ground failures and building damage, showing the potential to provide 
supplementary information for rapid hazard and loss estimation. However, the exact causes of changes in satellite images 
are not directly ascertained by the damage proxy maps (DPMs) alone. For example, changes could be due to building 
damage, landslides, liquefaction, noise, or any combination thereof. More importantly, the occurrence and intensity of 
landslides, liquefaction, and building damages are spatially correlated, which makes it more challenging to distinguish 
the sources of any such changes. 

In this study, we develop a generalized causal graph-based Bayesian network that models the physical interdependencies 
between geospatial features, seismic ground failures, and building damage, as well as DPMs. Geospatial features provide 
physical insights for estimating ground failure occurrence while DPMs contain event-specific surface change observations. 
This physics-informed causal graph incorporates these variables with complex physical relationships in one holistic 
Bayesian updating scheme to effectively fuse information from both geospatial models and remote sensing data. This 
framework is scalable and flexible enough to deal with highly complex multi-hazard combinations. We then develop a 
stochastic variational inference algorithm to jointly update the intractable posterior probabilities of unobserved landslides, 
liquefaction, and building damage at different locations efficiently. In addition, a local graphical model pruning algorithm 
is presented to reduce the computational cost of large-scale seismic ground failure estimation. We apply this framework 
to the September 2018 Hokkaido Iburi-Tobu, Japan (M6.6) earthquake and January 2020 Southwest Puerto Rico (M6.4) 
earthquake to evaluate the performance of our algorithm. 

 

Keywords: Variational Inference, Graphical Model, Bayesian Updating, Liquefaction Estimation, Landslides Estimation, 
Damage Proxy Map, Seismic Damage Estimation 
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1.  Introduction  
Earthquake-induced ground failures and building damage cause significant economic losses and fatalities. For 
example, the 2008 Wenchuan earthquake in China triggered about 200,000 landslides, leading to around 
26,500 deaths [1] in addition to nearly 60,000 shaking-induced fatalities. The series of earthquakes in 
Christchurch, New Zealand, in 2011, induced liquefaction over one third of the city, affecting more than 6,000 
buildings and resulting in huge economic costs [2]. These hazards have been shown to cause disruption to 
lifelines and structural damage to buildings [3]. Therefore, rapidly and accurately localizing and estimating 
ground failure and damage occurrences are beneficial to effective and efficient response and recovery.  

Various approaches have been developed over the years for estimating the location and intensity of 
earthquake-induced ground failures and building damage. Traditional methods include physical [4, 5, 6] and 
statistical models [7, 8, 9, 10]. Physical models such as the Newmark displacement-based landslide model [5, 
6] and liquefaction potential index [11] are often based on fundamental physical processes but cannot be 
employed when geotechnical data are absent. Although these models are based on the underlying physical 
processes, they are also often error prone due to the simplification of complex physical processes. Alternatively, 
statistical models can be calibrated against patterns of past ground failures using historical inventories given 
geospatial susceptibility proxies (e.g., slope, lithology.) and approximate ground motion levels that triggered 
them to estimated failure [8, 9]. The resolution and accuracy of these statistical models are often constrained 
by the limited availability of geospatial features as well as modeling uncertainties. For example, it is difficult 
to acquire comprehensive high-resolution lithology, land cover type, and other predictor variables for landslide 
model susceptibility, or soil strength and water depth needed for liquefaction modeling. Moreover, how these 
geospatial proxies impact the probability of landslide and liquefaction, together with ground shaking and 
moisture conditions, are spatially complex processes with large uncertainties. Significant challenges persist 
regarding the adaptation and generalization of statistical models trained on past inventories to new events 
because ground failures are sensitive to subtle environmental factors that vary from event to event. 

Recently, remote sensing methods have been developed to enable a quick estimation of ground failure 
and damage [12, 13, 14].  Most notably, damage proxy maps (DPMs), developed by researchers of NASA 
Advanced Rapid Imaging and Analysis (ARIA) team, model multi-temporal correlation changes between 
satellite images captured before and after an earthquake to indicate earthquake-induced ground surface changes 
[15]. Nevertheless, it is very difficult to categorize different types of changes through these imagery data, such 
as ground failures and building damages, as well as noise from vegetation growth and anthropogenic 
modifications, especially when these changes co-occur [16]. For example, ground shaking can cause 
liquefaction and building damage, but it is difficult to differentiate building damage and liquefaction directly 
from satellite images due to spatial overlap, which significantly restricts attribution to specific phenomena.  

To address the aforementioned challenges, we incorporate the geospatial models and remote sensing 
observations to jointly improve ground failure estimation performance. Remote sensing data provide rich 
information about event-specific surface change patterns, while geospatial models present physical insights to 
help distinguish different types of ground failure, damage, and noise. Some prior studies incorporated 
geospatial features and remote sensing observations for single-type ground failure estimation using linear 
combinations or black-box supervised classifiers [17, 18, 19]. However, these approaches lack consideration 
of complex and event-varying interdependencies between different types of ground failure, damage, remotely 
sensed observations, and noise, which limit their applicability for common multi-hazard, mixed-signal 
scenarios. 

In this work, we develop a new Bayesian updating framework integrating geospatial models with remote 
sensing observations through a physics-informed causal graph to achieve fast and effective joint estimation of 
regional ground failure and building damage. This framework is based on a Bayesian network that uses graph-
based representation as the foundation for encoding a set of conditional dependency relationships, e.g., 
physical causal relationship, among multiple random variables. The random variables are represented as nodes, 
while their causal relationships are modeled through edges with directions. The posterior distributions of these 
random variables can be obtained by learning their conditional dependencies through Bayesian updating. The 
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Bayesian network is shown to be a powerful tool for deciphering complex causation among multiple variables 
from a group of data [20, 21, 22]. In the context of this work, we build a causal graph that models physical 
interdependencies among landslides, liquefaction, building damage, and DPMs, which allows us to construct 
more complex and nonlinear relationships among different variables and thus more accurately approximate 
their physical relationships. Explicitly modeling the interdependencies via the causal graph enables a more 
comprehensive physical reasoning of the image changes in DPMs as ground failures, building damages, 
environmental noises, or all of them, and thus reduces bias and uncertainties in estimations.   

Specifically, we construct a Bayesian network based on the causal graph and develop a stochastic 
variational inference algorithm to infer location-specific posterior distributions of ground failure and building 
damage. The main challenges for the posterior distribution estimation on this Bayesian network are that (1) in 
near-real time, all ground failures and building damage are typically unobserved without any ground truth 
information; and (2) the statistical relationship between ground failure, building damage, and remote sensing 
observations are complex and unknown. These challenges make it difficult to infer the posterior distributions 
of unobserved variables. To address these challenges, we develop a stochastic variational inference algorithm 
to approximate the posterior distributions of unobserved ground failure and building damage and their 
statistical correlations by maximizing the lower bound of the likelihood of observed DPMs. The first step of 
the stochastic variational inference involves randomly sampling small batches of locations from the entire 
macroseismic zone to enable scalability of the method. We then jointly approximate the posterior of 
unobserved variables related to sampled locations with variational inference. Variational inference aims to 
derive a lower bound for the marginal likelihood of observed variables to provide analytical approximation of 
posterior distributions of unobserved variables with complex statistical correlations [23, 24, 25]. We then 
conduct a stochastic gradient descent to update the parameters representing statistical correlations between 
different variables. As the algorithm converges, we uncover the optimal combination of ground failure and 
building damage posteriors as well as their statistical relationships in an efficient way. With location-specific 
image-change information from remote sensing observations, we estimate ground failures and building 
damage with higher resolution and accuracy. 

There are three main contributions of this work: (1) We introduce a new physics-informed causal graph-
based model to integrate empirical statistical models, physical interdependencies, and remote sensing 
observations for large-scale joint ground failure and building damage estimation. This model provides a 
physical interpretation of DPM changes and higher spatial resolution and accuracy than the prior model, as 
well as a new approach to fuse different data modalities for seismic hazard estimation. (2) We design a 
stochastic variational inference framework to jointly approximate posterior probability of ground failures and 
building damage from complex Bayesian networks, without the need for any ground truth labels. We develop 
variational bounds that are applicable to a family of hierarchical Bayesian networks composed of unobserved 
binary variables and observed exponential family variables. We also enable scalability and computational 
efficiency for large-scale graph inference through stochastic gradient descent. (3) We evaluate our method on 
earthquakes in Hokkaido, Japan, and Puerto Rico, USA, for which some ground failure and building damage 
observations are available for validation to show the effectiveness of the framework in different types of events 
and environments.  

The remaining sections of this paper are organized as follows: In Section 2, we introduce our method, 
including the causal graph-based Bayesian network, stochastic variational inference, as well as the final 
algorithm of Bayesian updating. In Section 3, we evaluate our algorithm using the aforementioned case studies 
and discuss its performance.  

2.  Causal Graph-based Bayesian Network for Updating Ground Failure Estimation  
In this section, we introduce our causal graph-based Bayesian network to integrate ground failures, building 
damage, remote sensing observations, and their interdependencies. We then present a stochastic variational 
inference approach to approximate the intractable (i.e., cannot be directly modeled) posteriors of  unobserved 
ground failure and building damage using remote sensing observations and prior geospatial models. Finally, 
we describe the optimization framework to find optimal weights to represent the statistical relationships 
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between different predictors, ground failure, building damage, and environmental and anthropogenic noise, as 
well as remote sensing observations. In the following sections, we use DPMs mentioned above to represent 
our remote sensing observations. 

2.1 Causal Graph-based Bayesian Network 
In this section, we first model a causal graph-based Bayesian network in Fig. 1 to represent the statistical 
relationships between ground failure, building damage, and DPMs. Prior conditional distributions of nodes in 
the graphical models are further specified. 

 
Fig. 1 – Damage causal graph depicting physical interdependencies between  

ground failures (landslide (LS) and liquefaction (LF)), building damages (BD), remote sensing observations 
(DPM), bias terms, and noises.  

Given one location, we first denote 𝑥! for landslide (LS), 𝑥" for liquefaction (LF), and 𝑥# for building 
damage (BD). All x’s are unobserved binary variables and thus are assumed to have a Bernoulli distribution. 
The unobserved ground failure and damage nodes have binary variables 𝑥$ ∈ {0,1}, where 𝑖 ∈ {1, 2, 3}. 
When the LS/LF/BD happen, 𝑥$ = 1, otherwise 𝑥$ = 0. We use 𝑦	to refer to 𝐷𝑃𝑀 observation, which is a 
continuous variable bounded by [0,1]. We denote α%&and α%' as prior probabilities of LS and LF generated 
from the statistical models used in the U.S. Geological Survey (USGS) near-real-time ground failure product, 
respectively [10, 26]. We denote ϵ!, ϵ", ϵ#, ϵ( as unobserved Gaussian noise in LS, LF, and BD, as well as in 
DPMs, respectively. We also set up a XOR node 𝑢 to refer to the mutually exclusive states between its parents: 
landslide (𝑥!:LS) and liquefaction (𝑥":LF) to constrain that 𝑥!𝑥" = 0. This is based on our assumption that 
most mapped landslide and liquefaction occurrences are mutually exclusive spatially.  

All nodes are linked by an arbitrary directed acyclic graph in Fig. 1. We further give quantitative 
definitions of these links, i.e., statistical relationships, between different random variables. For unobserved 
nodes, 𝑥$ ∈ {0,1}, where 𝑖 ∈ {1,2,3}, we define 𝑤)!, 𝑤*!, and 𝑤+$ (𝑘 is any parent node of 𝑖) to quantify the 
correlations. We also define 𝑤,$ and 𝑥, = 1, which allows the node	𝑖 to be active even when its other parent 
nodes are inactive. For example, even if neither landsliding nor liquefaction is present, building damage is still 
possible due to the shaking. Using 𝒫(𝑖) to represent the parents of node 𝑖 (excluding the leaf nodes 𝑥, and 𝜖$), 
the conditional distribution of 𝑥$ is modeled as: 

 log
-.𝑥$ = 1/𝑥𝒫($), 𝜖$3

!4-.𝑥$ = 1/𝑥𝒫($), 𝜖$3
= 𝑤)!ϵ$ +𝑤,$𝑥, + ∑ 𝑤+$𝑥++∈𝒫($) . (1) 

The above logit relationship between LS/LF/BD and their parent nodes follows the assumption of  the 
logistic regression model, which is used in the statistical models of LS and LF used by the USGS [10, 26]. If 
all parents are active ( 𝑥+ = 1; ∀𝑘 ∈ 𝑃(𝑖) ), they activate the child node 𝑖  with probability of 

!
!678-94:!";!4:#!8#4∑ :$!8$$∈&(!) =,  regardless of the states of other parents. If 𝑥+ = 0, parent 𝑘 has no influence 
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on the state of 𝑥$. 𝑤;!𝜖$ measures noise in the physical dependencies. 𝑤,$𝑥, helps estimate and cancel the bias 
introduced by prior models. The node activation probabilities are defined as follows: 

 𝑝B𝑥$C𝑥𝒫($), 𝜖$D = E𝑝B𝑥$ = 1C𝑥𝒫($), 𝜖$DF
8! × E1 − 𝑝B𝑥$ = 1C𝑥𝒫($), 𝜖$DF

!48!. (2) 
Similarly, given 𝑦, we use 𝒫(𝑦) to define the parents of 𝑦. Based on the empirical probability density 

function of DPMs, we found 𝑦 subjects to a truncated lognormal distribution bounded by [0,1]. Therefore, we 
model the dependencies between 𝑦’s parents and 𝑦 as follows: 

 log(𝑦 + 𝛿) = 𝑤;𝜖( +𝑤,( + ∑ 𝑤$($∈𝒫(() 𝑥$, (3) 
where 𝜖( is a normal distribution representing the random noise in the DPM, 𝑤,( ≤ 0 estimates regional bias, 
𝛿 → 06, and 𝑦|	𝒫(𝑦) has a truncated log-normal distribution.The XOR node 𝑢 poses a constraint on the 
mutually exclusive relationship between the parent nodes LS and LF. We denote the parents of 𝑢 as 𝒫(𝑢); the 
distribution of 𝑢|𝑥>(?) is thus a Kronecker delta function, i.e.: 

 𝑝B𝑢C𝑥𝒫(?)D = P
1		𝑖𝑓	𝑢 = 	∏ 𝑥++	∈𝒫(?)

0		𝑖𝑓	𝑢 ≠ ∏ 𝑥++	∈𝒫(?)
. (4) 

  It is difficult to optimize the posterior based on the discrete Kronecker delta function. We first 
transform this function into its continuous version, which is a Dirac delta function 𝛿#𝑢 −∏ 𝑥𝑘𝑘∈𝒫(𝑢) %. Then, 
we use a Gaussian distribution to approximate this Dirac delta function, which is 

 𝑝B𝑢C𝑥𝒫(?)D =
!

√"DE
exp W−

9?4∏ 8$$∈𝒫(*) =+

"E+
X, (5) 

where 𝜎 is a small real positive number, 𝜎" → 0. As we assume mutual exclusivity between LS and LF always 
exists, 	𝑢 is always 0. 

With the above distribution and conditional distribution assumptions, we construct a Bayesian network 
based on the causal graph which effectively captures the dependencies between different ground failure types, 
building damage, and remote sensing observations. This network contains multiple unobserved random 
variables and unknown statistical relationships between random variables. The complex statistical 
dependencies make the posterior of unobserved random variables intractable. Therefore, we develop a 
stochastic variational inference framework to approximate the intractable posterior of unobserved ground 
failure and building damage.  

2.2 Stochastic Variational Inference 
With the Bayesian network constructed in Section 2.1, we need to further infer the posterior of ground failure 
and building damage. However, the problem is that (1) both statistical relationships, i.e., 𝑤$ and distributions 
of ground failures and building damage are unknown, and (2) the target macroseismic region could be large, 
which makes it computationally costly to jointly update posteriors of ground failure/building damage over the 
entire map. To address this problem, variational inference is introduced to factorize the Bayesian network first 
and approximate the posterior distributions of unobserved variables through maximizing the log-likelihood of 
observed variables. To ensure the scalability of our method, variational inference is conducted on a small batch 
of randomly sampled locations in each iteration, described further in Section 2.3. 

For each location 𝑙, we define a variational distribution 𝑞B𝑋GD, which further factorizes over hidden 
(unobserved) nodes: 

 𝑞(𝑋!) = ∏ 𝑞'𝑥"!)" = ∏ '𝑞"!)
#!
"
'1 − 𝑞"!)

$%#!
"

"  . (6) 
At each geo-location, 𝑞$G is defined to approximate the posterior probability that node	𝑖 at location 𝑙 is 

active. We fix 𝑞, = 1 so the node 𝑥, is always on. For any 𝑞B𝑋GD	, the marginal log-likelihood of the observed 
DPM 𝑦G and 𝑢 can be lower bounded by Jensen's inequality as follows: 
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 𝑙𝑜𝑔 𝑃 (𝑦! , 𝑢)  ≥ 𝐸 5𝑙𝑜𝑔 &'(",*,+",,-
.'+",,-

6  (7) 

  = ∫𝑞(𝑋! , 𝜖) 𝑙𝑜𝑔 𝑝 (𝑦! , 𝑢, 𝑋! , 𝜖)𝑑(𝑋! , 𝜖) − ∫𝑞(𝑋! , 𝜖) 𝑙𝑜𝑔 𝑞 (𝑋! , 𝜖)𝑑(𝑋! , 𝜖) (8) 

 	= 𝐸𝑞#𝑋𝑙,𝜖$[𝑙𝑜𝑔 𝑝 (𝑦𝑙, 𝑢, 𝑋𝑙, 𝜖)] −	𝐸𝑞#𝑋𝑙,𝜖$[𝑙𝑜𝑔 𝑞 (𝑋𝑙, 𝜖)]. (9) 
Using the above equation, given a map containing a set of locations, ℒ, we further derive a tight lower 

bound for the log-likelihood as follows: 

 𝑙𝑜𝑔 𝑃 (𝑦, 𝑢) ≥ 𝐿(𝑞,𝑤),   (10) 

where 𝐿(𝑞,𝑤) = 

∑ @−log𝑦! − log𝑤,$ −
'345("-

%
67&$

% 6∑ 7'$
%

'∈)𝒫+$",
.'
"

97-$
%3∈ℒ   

−
∑ 97!$!,/∈)𝒫+$",;!1/

7/$.!
"./
"%97&$ 345("%9'345("-<∑ 7'$'∈)𝒫+$",

.'
" =

97-$
% −

97&$ ∑ 7'$'∈)𝒫+$",
.'
"

97-$
%   

−∑ 𝑞"! 	log 51 + exp H−𝑤>" −𝑤?!𝛼"
! +

7-!
%

9
J6"∈{AB,AC}  −∑ '1 − 𝑞"!) log 51 + exp H𝑤>" +𝑤?!𝛼"

! +
7-!
%

9
J6"∈{AB,AC}   

−∑ 𝑞"!"∈{EF} 𝑞𝒫(")! log 51 + expH−𝑤>" −𝑤𝒫(")" +
7-!
%

9
J6 −∑ 𝑞"!'1 − 𝑞𝒫(")! ) log 51 + exp H−𝑤>" +

7-!
%

9
J6"∈{EF}   

−∑ '1 − 𝑞"!)𝑞𝒫(")! log 51 + exp H𝑤>" +𝑤𝒫(")" +
72!
%

9
J6"∈{EF}   

−∑ '1 − 𝑞"!)'1 − 𝑞𝒫(")! ) log 51 + exp H𝑤>" +
72!
%

9
J6"∈{EF}  − $

9J%
K(𝑢!)9 + (1 − 2𝑢!)∏ 𝑞K!K∈𝒫'*"- M  

         −∑ 𝑞"! log 𝑞"!"∈{AB,AC,EF} − ∑ '1 − 𝑞"!) log'1 − 𝑞"!)"∈{AB,AC,EF} N. (11) 
The overall idea of getting the lower bound is to introduce auxiliary parameters to find the tight lower 

bound of each expectation. Jensen’s inequality, Taylor’s expansion, and Bayesian theorem are utilized [22]. 
With the tight lower bound of log-likelihood of DPM observations, we can further maximize the lower bound 
to find optimal posteriors of unobserved variables, i.e., LS, LF, and BD, as explained in the following 
subsection. 

2.3 Expectation-Maximization Algorithm for Posterior Optimization 

With the overall variational bound derived in Section 2.2, our final objective is to maximize the bound 
to find optimal combinations of posteriors and weights. As both posteriors and weights are unknown, we 
develop an expectation-maximization approach to achieve this. In the step of expectation, we derive closed-
form update equations for local posteriors of LS, LF, and BD, i.e., 𝑞$G, by maximizing the lower bound and 
setting the gradients of the lower bound as 0, i.e., H𝐿(𝑞,𝑤)

∂𝑞𝑖
𝑙 = 0. This gradient is obtained via the chain rule, and 

the optimal posterior follows the form below: 

 𝑞$G =
!

!6IJK.4L.M𝒫(!)
, ,M𝒮(!)

, ,M𝒞(!)
, ,(,,O!

,,:3P
 , (12) 

where 𝒫(𝑖) refers to the set of parent nodes, 𝒞(𝑖) refers to the set of child nodes, 𝒮(𝑖) refers to the set of spouse 
nodes that share the same child nodes with i. T is a nonlinear function that equals H[𝐿

(𝑞,𝑤)+𝑞𝑖
𝑙 log 𝑞𝑖

𝑙+91−𝑞𝑖
𝑙= log91−𝑞𝑖

𝑙=]
∂𝑞𝑖
𝑙 , 

determined by the prior of i, weights of edges associated with node i, and posteriors of the parent, child, and 
spouse nodes of i. 
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In the maximization step, we conducted stochastic gradient descent updates to estimate the optimal 
weights using a mini-batch of data randomly sampled from different locations. The edge weights 𝑤(R) at the 
iteration t are therefore updated as follows: 

 𝑤(R6!) = 𝑤(R) + 𝜌𝐴∇ℒ(R)(𝑤), (13) 
where 𝜌  controls the learning rate and 𝐴	is a preconditioner and here is set up as the identity matrix to 
accelerate convergence to high-likelihood models. In each iteration, we first randomly sample a mini-batch of 
locations from the given map. Then, the expectation step and maximization step are implemented to update 
the posterior estimations as well as the global weight parameters. As the model converges, the optimal 
posteriors of landslide, liquefaction, and building damage at each location are estimated.  

3. Evaluation  
We evaluate the causal graph-based Bayesian network with stochastic variational inference and expectation-
maximization algorithm using the September 2018 Hokkaido Iburi-Tobu (M6.6) earthquake and the January 
2020 Puerto Rico (M6.4) earthquake. In the following sections, we compare and discuss the spatial distribution 
of prior and posterior models with the available ground truth observations for these two earthquakes. The prior 
models refer to current earthquake-induced landslide [26] and liquefaction [10] hazards of the USGS ground 
failure product. The posterior models are the resulting landslide, liquefaction, and building damage models 
using our causal graph-based Bayesian network. 

To evaluate the performance of these models, we measured true positive rate (𝑇𝑃𝑅) and false positive 
rate (𝐹𝑃𝑅) as follows: 

 TPR = L>
L>  6 'T

 , FPR = '>
'>  6 LT

, (14) 

where 𝑇𝑃, 𝑇𝑁, 𝐹𝑁,		and 𝐹𝑃 count the number of true positives, true negatives, false negatives, and false 
positives of both prior and posterior models, respectively. We also compared the performance of prior and 
posterior models using the receiver operating characteristic (ROC) curve to evaluate their ground failure 
identification ability. Besides binary classification accuracy, we also employed cross-entropy loss (CEL) to 
evaluate how similar to the true distribution the estimated distribution is. CEL is defined as follows: 

 CEL = − !
T
∑ EB𝑔G log 𝑞GD + B1 − 𝑔GD logB1 − 𝑞GDFU∈V , (15) 

where 𝑔 is a binary logical variable with a value of 1 if a location has a ground truth observation and 𝑞 is the 
normalized prior or posterior estimates in the range [0,1] for all locations N. The lower the loss, the better the 
estimated probability distribution of landslide or liquefaction model. 
3.1 September 2018 Hokkaido Iburi-Tobu earthquake 
Two days after the landfall of Typhoon Jebi with heavy rainfall, on September 6, 2018, at 3:08 am (JST), 
devastating landslides and significant liquefaction were triggered in the southern region of Hokkaido, Japan, 
by a Mw 6.6 earthquake [27, 28]. The ARIA team generated DPMs using the SAR images from the ALOS-2 
satellites of the Japan Aerospace Exploration Agency [29]. This DPM covered the towns of Atsuma and Abira, 
which were situated near the large-scale landslides [30]. The prior estimations of landslide and liquefaction 
are generated by ShakeMap in Atlas V3 [28] provided by the USGS. 

Fig. 2 shows that the posterior landslide model (Fig. 2c), which has higher resolution (30 m), resembled 
the spatial distribution of ground truth observations (Fig. 2d) more accurately than the prior models (Fig. 2a) 
that had lower 230-m resolution [26]. The posterior model, which integrates the DPM (Fig. 2b) also identified 
more true positives with prominent peaks than the prior model. The 𝐹𝑃𝑅	decreased by 50% while the	TPR 
increased by 379% compared to the prior model estimates. This improved performance of posterior landslide 
estimation minimized the CEL by 30%. Therefore, the causal graph has thoroughly improved the landslide 
model by incorporating the detected imagery changes from the DPMs that may be classified as a multi-hazard 
impact of heavy rainfall and ground shaking on soil slopes.  
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      (a) 

 
 (b) 

 
(c) 

 
(d)  

Fig. 2 – (a) Prior and (c) posterior landslide models with (b) DPM and (d) ground truth observations  
for the September 2018 Hokkaido Iburi-Tobu earthquake.  

In Fig. 3, the prior liquefaction model [10] highlighted areas with significant probability along the river 
system of Atsuma and Ukuru. However, this prior model with a low 450-m resolution also assigned very small 
probability to locations with observed landslides (Fig. 3a), implying an inaccurate spatial distribution of prior 
model estimates. To reduce these false positives, the posterior model (Fig. 3c) with 30-m resolution has 
adequately considered the limitations of prior ground failure models in the causal graph through its mutual 
exclusivity node that allowed the influence of only one ground failure hazard, either landslide or liquefaction. 
In this case, our analysis did not include the 𝑇𝑃𝑅, 𝐹𝑃𝑅, and 𝐶𝐸𝐿 for liquefaction, because we did not have 
ground truth data within the given areal extent. 

 
      (a) 

 
 (b) 

 
(c) 

 
(d)  

Fig. 3 – (a) Prior and (c) posterior liquefaction models with (b) DPM and (d) locations of water bodies  
for the September 2018 Hokkaido Iburi-Tobu earthquake. 

Furthermore, the town of Atsuma reported more than 2,960 damaged buildings [31]. In Fig. 4, the 
posterior model estimated the spatial distribution of these damaged buildings using the building footprints [32] 
(Fig. 4a) and DPM (Fig. 4b). This representative posterior model identified priority buildings with relatively 
high likelihood of severe damage illustrated by the red points (Fig. 4c). However, our analysis also did not 
measure the 𝑇𝑃𝑅, 𝐹𝑃𝑅, and 𝐶𝐸𝐿, because we did not have geotagged data on actual damage to buildings. Note 
that the USGS continues updating the prior models to provide more accurate estimations. The results shown 
in Figs. 2, 3, and 4 demonstrate that our model provides accurate posterior distribution of ground failure and 
building damage even with large uncertainties in the prior models, and as the prior model improves over time, 
the posterior will improve further. 

 
      (a) 

 
 (b) 

 
(c)  

Fig. 4 – (a) Building footprint and (c) posterior building damage model with (b) DPM  
for the September 2018 Hokkaido Iburi-Tobu earthquake.  
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In addition, in Fig. 5, the causal graph has adequately incorporated the probable influence of landslides 
on the posterior building damage model (Fig. 5c). The significant image changes from the DPM (Fig. 5b) 
inferred both posterior landslide and building damage probability in this area (Fig. 5d). The reconnaissance 
efforts also verified these completely damaged buildings were located along steep areas [21].  

 
      (a) 

 
 (b) 

 
(c) 

 
(d) 

 

Fig. 5 – (a) An example of identified destroyed house, (b) corresponding DPM with significant ground 
surface changes detected, (c) posterior building damage estimation, and (d) landslide observations. 

3.2 January 2020 Southwest Puerto Rico earthquake 
A Mw 6.4 earthquake struck the southwest area of Puerto Rico on January 7, 2020, at 4:24 am (AST) [33]. 
Post-disaster reconnaissance efforts reported widespread casualties with more than 775 affected buildings [34] 
and 800 ground failure observations [35, 36]. To identify probable damaged areas, the ARIA team generated 
DPMs using the SAR images from the Copernicus Sentinel-1 satellites of the European Space Agency [37]. 

 
      (a) 

 
 (b) 

 
(c) 

 
(d) 

 

Fig. 6 – (a) Prior and (c) posterior landslide models with (b) damage proxy map and (d) select 
a 

Fig. 6 shows that incorporating the DPM (Fig. 6b) reduced the uncertainty in the posterior landslide 
model (Fig. 6c) with a 6% decrease in FPR and a better resolution of at least seven times than that of the prior 
model (Fig. 6a). Fig. 7a also shows that the TPR improved at any thresholds of probability. Ground truth 
observations such as disrupted slides and falls at 18°00'15"N, 66°53'41"W (A in Fig. 6d), boulder at 
17°58'54"N, 66°52'44"W (B), and debris at 18°00' 49"N, 66°45'59"W (C) also validated the resulting 
prominent peaks in the posterior model (Fig. 6d). These observations were not observed as peaks in the prior 
landslide model [26], although it revealed several areas with high probability. Nonetheless, the posterior model 
reduced the CEL by 52.5%, indicative of improved posterior landslide estimates for the entire area. 

Moreover, in Fig. 8, ground cracks with extruded sediments at 17°58'21"N, 66°54'27"W (D in Fig. 
8d), road fissures due to lateral spreading at 17°58'29"N, 66°48'12"W (E), and flooding due to land subsidence 
at 18°00'24"N, 66°46'10"W (F) verified the prominent peaks of posterior liquefaction model (Fig. 8c) with 15 
times higher resolution than that of current prior model [10] (Fig. 8a). As shown in Fig. 7b, the posterior model 
achieves 92.2% TPR with 22.9% FPR, which improves compared to the prior model with 88.5% TPR and 31.8% 
FPR. The mutual exclusivity node in the causal graph has adequately identified the areas with less probable 
liquefaction, thereby reducing CEL by 53.3% in posterior model (Fig. 8d). 
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(a)                                                                    (b) 

Fig. 7 – ROC curve of prior and posterior models of (a) landslide and (b) liquefaction  
for the January 2020 Southwest Puerto Rico earthquake. 

 
      (a) 

 
 (b) 

 
(c) 

 
(d) 

 

Fig. 8 – (a) Prior and (c) posterior liquefaction models with (b) damage proxy map and  
(d) ground truth observations after the January 2020 Southwest Puerto Rico earthquake. 

In the town of Guánica, the buildings in the administrative center and the Maria Antonia community 
suffered substantial damage. Fig. 9 shows that the posterior building damage model predicted the spatial 
distribution of these damaged buildings, from minor to destroyed, with a TPR of over 76%. In generating this 
model, the use of the available building footprint data [32] as an input has demonstrated the capability of the 
causal graph to consider the potential influence of either landslide or liquefaction to building damage.  

 
      (a) 

 
 (b) 

 
(c) 

 
(d) 

 

Fig. 9 – (a) Building footprint and (c) posterior building damage model with (b) damage proxy map and  
(d) ground truth observations after the January 2020 Southwest Puerto Rico earthquake. 

4. Conclusions 
We present a new joint Bayesian updating framework using a physics-informed causal graph model for post-
earthquake ground failure and building damage estimation. The Bayesian causal graph models physical 
interdependencies among prior models of ground failure, ground failures, building damage, and remote sensing 
observations. Based on the graph, a stochastic variational inference approach is designed to jointly update the 
estimations of ground failures and building damage through fusing conventional geospatial models and remote 
sensing data. We evaluate the algorithm on post-earthquake data collected from Hokkaido, Japan, and Puerto 
Rico, USA, and compare the estimations with an inventory of observed ground failure and building damage. 
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The results showed that by incorporating high-resolution imagery, our model significantly reduces the false 
positive rate of ground failure estimates and improves the spatial accuracy and resolution of ground failure and 
building damage inferences. 
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